成都YE2三相异步电动机质优价廉_【金港电机】

2020-06-04 16:35:02 作者:赵经理
买帖  |修改  | 投诉  | 刷新  | 

公司产品涵盖

1、YE2(GY2)、YE3(GGU)系列高效率三相异步电动机,YD系列变极多速三相异步电动机,YD系列远极比系列(2/8P、2/12P、4/16P等系列填补国内空白);

2、YS系列小功率三相异步电动机;YVF2 系列变频调速三相异步电动机,YEJ系列电磁制动三相异步电动机,YDEJ系列变极多速(特别是远极比系列)三相异步电动机,YVF2-E系列变频调速制动三相异步电动,YZS系列注塑机低噪声专用三相异步电动;

3、GU80-132频繁起动仪表车专用电机;

4、Y2GW系列(112-160)耐高温专用电机;M7130(M7132,M7150)等大小型平面磨床用的专用定转子(产品可直接安装使用),YYB(132-160)4,6P配YB100等油泵的内轴式油泵专用电机;

5、配M1420,M1432,M1450,MG1480,等外圆磨床中配套的YD100-4/2、Y100L-2、Y112M-2P、Y132S-4、160-4,180-4等低振动主轴电机(振动速度0.4mm/s以下)和 YD90S-8/4,90L-8/4,112M-8/4,132-8/4等(车头电机),数控机床专用的YVF2-100-180(5-100Hz)系列变频电机;

6、YVF2-(100-180)机座号4、6极,频率为(1-33.3Hz,33.3-200 Hz)低速高扭矩变频电机;

7、YVF2-(100-160)的(2-200Hz ) 的高速变频电机,YD100L- 8 / 4 / 2 (0.75/2.0/2.3KW)、YD112M- 8 /6 / 4(1.5/2.0/2.3KW)配数控仪表车专用电机;

8、机床自动化控制设备用的ZJY180(150/ 250)主轴高效率交流伺服电机;

9、Y2(71-132)机座号各种长轴非标准电机,YS、YY5032(5034)润滑泵专用电机;

10、各种派生(特种规格系列)电动机。

公司的经营宗旨是:质量至上、信誉至上、竭诚服务、匠患匠赢。我们以节能的产品和真诚周到的服务。热烈欢迎客商前来洽谈业务。


单相异步电动机正反转控制的两种方法

单相异步电动机在工农业生产及人们日常生活中应用非常广泛。根据实际需要,不仅要电机正转,有时还要使其反转。下面笔者就来同大家一起讨论着个问题,并谈谈自己的一些看法。
单相异步电动机有两个定子绕组,一个是主绕组,即工作绕组,产生主磁场;另一个是副绕组,即辅助绕组(启动绕组),用来与主绕组共同作用而产生旋转磁场,使电动机产生启动转矩。这两个绕组在空间上相差90°,通常是启动绕组串联一个适当容量的电容器。
要想单相异步电动机反转就必须改变旋转磁场的方向,使旋转磁场反转。而要改变磁场的旋转方向就需将两个绕组(工作绕组和启动绕组)中任一个绕组的电流相位发生改变180°。那么如何实现这种改变呢?
1、 启动绕组与工作绕组互换
对于单相电容式电动机,将启动电容器从一个绕组改接到另一个绕组上即可实现电动机的正反转。这种方法改变转向,电路简单,适用于频繁正反转的场合。比如,家用洗衣机。但是这种方法有一定的局限性,它只适用于启动绕组与工作绕组的技术参数(线圈匝数、粗细等)都相同的电动机。如下图:


(图一)
上图一所示,U1U2、V1V2分别为工作绕组和启动绕组,C为启动电容,K为控制开关,L、N为电源接线端。当开关K与上触点接触时,电机正转;当开关K与下触点接触时,电机反转。其等效电路如下:


(图二)
从图二可看出,电机反转时,电机工作绕组与启动绕组进行了互换连接。
2、 工作绕组或启动绕组任一组的首端与末端对调
这种方法的实质是将其中任一套绕组反接,使之电流相位改变180°。主要用于启动绕组与工作绕组技术参数不相同电容(电阻)启动异步电动机。为了方便接线,生产厂家往往使用统一标准的接线板将电动机绕组线引出,如下图三所示,U1U2,V1V2分别为工作绕组和启动绕组,C为外接电容器,K为电动机内部的离心开关。电动机启动后,当转速达到80%时左右时,K断开,切除V1V2,工作绕组拖动负载运行。


(图三)
电机正转时,用连接片将U1与V1连接在一起,U2与Z2连接在一起。U1端接电源相线,U2端接电源你零线。如下图:


(图四)
电机反转时,用连接片将U1与Z2连接在一起,U2与V1连接在一起,U1端接电源相线,U2接电源零线。如下图:


(图五)
有图五可看出,电机反转时,启动绕组的首端与末端进行了有效互换。


如何改变三相异步电动机的旋转方向

由异步电动机的工作原理可知,电动机转子的转向是由转子所受到的电磁转矩方向决定的,而电磁转矩的方向又取决于定子旋转磁场的方向。即转子转向与定子旋转磁场转向相同。而旋转磁场的方向又取决于通入定子三相绕组中的三相电源的相序。相序改变,旋转磁场方向也改变。因此,要改变电动机转向,只要改变通入定子三相绕组中的三相电源的相序即可。其方法很简单,只要将三相电源接线中的任意两相电源线对调接入电动机即可实现。


电动机的安装质量标准

如果安装好的电动机达到以下标准,则认为电动机的安装质量符合要求:

(1)电动机的性能与工作环境相适应。

(2)电动机的基础、地脚螺栓孔、沟道、孔洞及电缆管的位置、尺寸和质量均符合设计和土建工程的要求。

(3)基础、风道和地脚螺栓孔内的模板和杂物均已清除干净。

(4)地脚螺栓孔呈垂直状态,沿其全长的偏差不超过地脚螺栓孔直径或短边长的1/10。螺孔与纵横中心线的偏差不超过地脚螺栓孔直径或短边长的1/10。

(5)各设备下的混凝土承力面和电动机的混凝土风道顶部的标高与设计标高相差不大于10mm。

(6)管沟底部平整,并且符合设计要求的倾斜度和正确的倾斜方向。

(7)电动机外壳上的油漆完好,并标明旋转方向和编号。

(8)电动机外壳有良好的接地。如果电动机的外壳和基础框架保持可靠的接触,则可将基础框架接地,但基础框架的接地线应明显,便于检查。


不对称运行和突然短路对同步电机的影响

一、 不对称运行影响

不对称运行时,负序电流产生的负序旋转磁场相对于转子以两倍同步速旋转,并在转子绕组(包括励磁绕组和阻尼绕组)中感应出两倍频率的电流以及在转子表面感应出涡流,这些电流将在绕组中和铁心表面引起额外损耗并产生热量,使得转子温升增高。特别是汽轮发电机,涡流在转子表面轴向流动,在转子端部沿圆周方向流动而形成环流,这些电流不仅流过转子本体,还流过护环;它们流经转子的槽楔与齿、护环与转子之间的许多接触面,这些地方具有接触电阻,发热尤为严重,可能产生局部高温、破坏转子部件与励磁绕组绝缘。水轮机散热条件较好,负序磁场引起的转子过热的影响相对小些。

由于负序旋转磁场与转子磁场之间有两倍速的相对运动,因而它们之间将产生以两倍频率(100Hz)脉动的转矩,这个附加转矩同时作用在转子轴和定子机座上,并引起100Hz的振动和噪声。水轮发电机中大量的焊接机座结构容易被振动损坏,因此水轮发电机中必须采用阻尼绕组以削弱负序磁场。

为此,对不对称负载运行要给予必要的限制。对于同步发电机,常从转子发热的角度出发限制负序电流与额定电流之比。

不对称运行除了对发电机本身的影响外,对电网其他设备及附近的通讯设施也产生不良影响。发电机的不对称运行导致电网电压的不对称,不对称的电压加于用户的设备上会产生不良影响。如使得异步电动机的电磁转矩、输出功率和效率降低,并引起转子过热等。另外,发电机绕组中因有负序电流而出现更高次的谐波电流,这些高频电流会对输电线附近的通迅线路产生音频干扰。

为了减少负序电流的影响,通常在转子上装置阻尼绕组。阻尼绕组对负序磁场有很好的去磁作用,能降低负序磁场对转子造成的过热以及减小脉动转矩。

二、突然短路的影响

同步电机突然短路后不仅破坏了电机电磁方面的平衡,而且破坏了电机机械方面和热方面的平衡。一般由于电磁瞬变过程持续时间很短,可以认为在这个短时内只有电磁方面的影响。经验证明,突然短路后,最受威胁是绕组端部。由于冲击电流很大、它所产生的强大的电磁力作用与绕组端部会造成严重的后果,所以同步电机绕组端部的可靠固定是电机设计制造者必须考虑的问题。

突然短路后,由于电压的降低引起发电机输出功率的突然下降,而原动机输给发电机的转矩又不能及时调节,故转矩平衡被破坏,造成同步发电机失步,使得系统的稳定受到影响。不对称短路时还会在没有短路的绕组内产生过电压,以致造成电力系统过电压。


三相异步电动机的轴上负载加重时,定子电流为什么随着转子电流而变化?

当一台异步电动机的绕组结构一定时,磁动势的大小就是由定子电流来决定的。在正常情况下,电流的大小决定于负载,当电源电压一定而负载增大时,会使电动机转轴的反转矩增加,因此使转速下降。根据电动机基本工作原理中“相对运行”这一概念,转子导体与磁场(电源电压不变的情况下它的转速也是不变的)之间的相对运动就会增加,也就是说转子导体要割气隙磁场的速度增加了。因此,转子感应电动势 E2 ,转子电流 I2 和转子磁动势 F2 也就增大。应该注意的是,转子磁动势 F2 对于定子主磁场不说是起去磁作用的,为了抵消 F2 的去磁作用,定子电流 I1 和定子磁电动势 F1 就会相应的增大,因此电动机轴上的负载越重,转子电流 I2 就越大(当然也不能无限增大负载)。定子电流 I1 也相应地增大,所以定子电流 I1 是随着转子电流 I2 的变化而变化的。


直流电动机转速不稳的原因及处理方法

直流电动机转速不稳,一般是以下两方面的原引起的,可分别采取措施予以处理:

(1)电源电压波动或控制系统的参数调整不当,使电动机的转速时快时慢,严重时甚至引起电机振荡。处理的方法是:注意测试电枢回路、励磁回路的电源电压有无变化,若电源电压波动较大,应首先排除电源故障。电源电压的波动常与调速系统的参数调整不当有关,应根据具体情况,将有关参数调整好。

(2)电动机的内部故障,如电刷偏离中心线位置,串励绕组、换向极绕组的极性接反,使电动机的负载发生变化,造成转速波动较大。处理方法是:注意检查校正电刷的中性线位置,检查各绕组的连接线极性是否正确。同时也要观察电刷下有无火花,电枢电流有无明显变化,以便全面分析判断故障原因。